Abstract
We study torsion properties of the twisted Alexander modules of the affine complement M of a complex essential hyperplane arrangement, as well as those of punctured stratified tubular neighborhoods of complex essential hyperplane arrangements. We investigate divisibility properties between the twisted Alexander polynomials of the two spaces, compute the (first) twisted Alexander polynomial of a punctured stratified tubular neighborhood of an essential line arrangement, and study the possible roots of the twisted Alexander polynomials of both the complement and the punctured stratified tubular neighborhood of an essential hyperplane arrangement in higher dimensions. We apply our results to distinguish non-homeomorphic homotopy equivalent arrangement complements. We also relate the twisted Alexander polynomials of M with the corresponding twisted homology jump loci.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have