Abstract

Optical chirality, which plays important roles in liquid crystal display and biological and chemical detection, has been attracting scientists' attention due to its potential applications in optical information processing. Usually, the chiral optical response of natural molecules is very weak. However, the emergence of metasurfaces offers a promising solution to solve this issue. By judiciously designing the geometry of meta-atoms, we have realized strong optical circular dichroism (CD) in both linear and nonlinear optical regimes. However, tuning of the CD with a metasurface remains challenging. Here, we propose the twist-angle-controlled nonlinear CD effect by using the second-harmonic generation process on a gold-crystal hybrid metasurface. The CD effect of the second-harmonic waves can be tuned well by controlling the twist angle between the two constituent materials. The proposed hybrid metasurface may open new avenues for developing ultracompact and multifunctional nonlinear optical devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call