Abstract

In this contribution, we report on the visualization of 12-crown-4 molecular diffusion behavior within a single-crystal particle of covalent organic framework-300 (COF-300) using operando dark-field optical microscopy. The diffusion area and front of 12-crown-4 are directly tracked in real time, offering key information for quantifying the diffusion coefficient (D). The direction of the diffusion and variation of D reveal intraparticle and interparticle heterogeneity. Notably, an unexpected hydration-accelerated diffusion process of 12-crown-4 within the pore channels of COF-300 is captured, in which a relatively low concentration of 12-crown-4 aqueous solution induces a fast diffusion, whereas the pure 12-crown-4 liquid cannot access the framework. The observed acceleration diffusion is demonstrated to arise from the hydrogen-bonding interactions between surface water molecules of hydrated 12-crown-4 and the imine groups of COF-300. These findings expand the mechanistic understanding of the noncovalent interactions between COFs and crown ethers (CEs), which will help to design and prepare CE-based COFs with improved performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.