Abstract

Atomically thin two-dimensional (2D) Janus materials and their Van der Waals heterostructures (vdWHs) have emerged as a new class of intriguing semiconductor materials due to their versatile application in electronic and optoelectronic devices. Herein, We have invstigated most probable arrangements of different inhomogeneous heterostructures employing one layer of transition metal dichalcogenide, TMD (MoS2, WS2, MoSe2, and WSe2) piled on the top of Janus TMD (MoSeTe or WSeTe) and investigated their structural, electronic as well as optical properties through first-principles based calculations. After that, we applied twist engineering between the monolayers from 0^{circ } rightarrow 60^{circ } twist angle, which delivers lattice reconstruction and improves the performance of the vdWHs due to interlayer coupling. The result reveals that all the proposed vdWHs are dynamically and thermodynamically stable. Some vdWHs such as MoS2/MoSeTe, WS2/WSeTe, MoS2/WSeTe, MoSe2/MoSeTe, and WS2/MoSeTe exhibit direct bandgap with type-II band alignment at some specific twist angle, which shows potential for future photovoltaic devices. Moreover, the electronic property and carrier mobility can be effectively tuned in the vdWHs compared to the respective monolayers. Furthermore, the visible optical absorption of all the Janus vdWHs at theta = 0^{circ } can be significantly enhanced due to the weak inter-layer coupling and redistribution of the charges. Therefore, the interlayer twisting not only provides an opportunity to observe new exciting properties but also gives a novel route to modulate the electronic and optoelectronic properties of the heterostructure for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.