Abstract

We propose a model to explain the formation mechanism of twin grains at the three-grain tri-junction (3GTJ) on the growth interface during directional solidification of multi-crystalline silicon. We also attempt to confirm its validity by comparing with the experimental results. This model is an extension of the previous model for the two-dimensional (2D) nucleation at the grain boundaries (GBs). It is found that the energy barriers for faceting and twinning nucleus at the 3GTJ are much smaller than that at GBs. As a result, a higher twinning probability can be obtained at a much lower undercooling. Two types of tri-junctions are considered according to the experiments and the dominant factors which decide the twinning probability on each facet at the 3GTJ are further discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call