Abstract

Extension twin nucleation and variant selection in magnesium alloy WE43 is investigated in experimentally characterised and deformed microstructures replicated in crystal plasticity models. Total stored (dislocation) energy density is found to identify the experimentally observed locations of twins which are not otherwise explained by global Schmid factors or local resolved shear stress criteria. A critical total stored energy of the order 0.015 Jm-2 is determined below which twin nucleation does not occur. The total stored energy density explains the locations of the observed twins and the absence of twins in parent grains anticipated to be favourable for twin nucleation. Twin variant selection has been shown to be driven by minimising locally stored shear energy density, while the geometric compatibility and strain compatibility factors only aid in partial prediction. All experimentally observed variants were correctly determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call