Abstract

Twin-field quantum key distribution (TF-QKD) has emerged as a promising solution for practical quantum communication over long-haul fiber. However, previous demonstrations on TF-QKD require the phase locking technique to coherently control the twin light fields, inevitably complicating the system with extra fiber channels and peripheral hardware. Here, we propose and demonstrate an approach to recover the single-photon interference pattern and realize TF-QKD without phase locking. Our approach separates the communication time into reference frames and quantum frames, where the reference frames serve as a flexible scheme for establishing the global phase reference. To do so, we develop a tailored algorithm based on fast Fourier transform to efficiently reconcile the phase reference via data postprocessing. We demonstrate no-phase-locking TF-QKD from short to long distances over standard optical fibers. At 50-km standard fiber, we produce a high secret key rate (SKR) of 1.27 Mbit/s, while at 504-km standard fiber, we obtain the repeaterlike key rate scaling with a SKR of 34 times higher than the repeaterless secret key capacity. Our work provides a scalable and practical solution to TF-QKD, thus representing an important step towards its wide applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.