Abstract

The trade-off between distance and secret key generation rate remains one of the major challenges in the practical implementation of quantum key distribution (QKD). As a solution, a twin field QKD protocol was proposed by Lucamarini et al (2018) to address this challenge. In this protocol, the achievable secret key rate scales with the square root of channel transmittance and can surpass the secret key capacity for repeaterless QKD. However, the protocol exploits phase to encode information which presents the problem of active stabilization of interferometers. We propose a reference frame independent twin field quantum key distribution (RFITF QKD), which does not require the reference frames’ alignment. Thus, this reduces the complexity of practical QKD systems in achieving active stabilization of phase. Moreover, we employ the loss-tolerant method proposed by Tamaki et al (2014) which allows us to prove the security of the protocol by considering imperfections in the state preparation. Our simulation results show that our proposed protocol can extract a secure key over a transmission distance of l = 505 km, l = 516 km and l = 530 km for deviation of 8.42°, 7.28° and 5.15°, respectively from the desired phase encoding angle. These results demonstrate that despite the state preparation flaws, the key rates achieved are still comparable to the perfect encoding scenario. When our proposed protocol is implemented with an imperfect source, it achieves a transmission distance beyond the secret key capacity bound for repeaterless QKD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.