Abstract
Quantum digital signatures (QDS) are able to verify the authenticity and integrity of a message in modern communication. However, the current QDS protocols are restricted by the fundamental rate-loss bound and the secure signature distance cannot be further improved. We propose a twin-field quantum digital signature (TF-QDS) protocol with fully discrete phase randomization and investigate its performance under the two-intensity decoy-state setting. For better performance, we optimize intensities of the signal state and the decoy state for each given distance. Numerical simulation results show that our TF-QDS with as few as six discrete random phases can give a higher signature rate and a longer secure transmission distance compared with current quantum digital signatures (QDSs), such as BB84-QDS and measurement-device-independent QDS (MDI-QDS). Moreover, we provide a clear comparison among some possible TF-QDSs constructed by different twin-field key generation protocols (TF-KGPs) and find that the proposed TF-QDS exhibits the best performance. Conclusively, the advantages of the proposed TF-QDS protocol in signature rate and secure transmission distance are mainly due to the single-photon interference applied in the measurement module and precise matching of discrete phases. Besides, our TF-QDS shows the feasibility of experimental implementation with current devices in practical QDS system.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have