Abstract
Let k ≥ 2 be an integer and G be a connected graph of order at least 3. A twin k-edge coloring of G is a proper edge coloring of G that uses colors from ℤ k and that induces a proper vertex coloring on G where the color of a vertex v is the sum (in ℤ k ) of the colors of the edges incident with v. The smallest integer k for which G has a twin k-edge coloring is the twin chromatic index of G and is denoted by . In this paper, we determine the twin chromatic indices of circulant graphs , and some generalized Petersen graphs such as GP(3s, k), GP(m, 2), and GP(4s, l) where n ≥ 6 and n ≡ 0 (mod 4), s ≥ 1, k ≢ 0 (mod 3), m ≥ 3 and m ∉ {4, 5}, and l is odd. Moreover, we provide some sufficient conditions for a connected graph with maximum degree 3 to have twin chromatic index greater than 3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.