Abstract

Merging the characteristics of thermoresponsive and stimuli-degradable polymers yields so-called transiently thermoresponsive polymers, which can find application for the design of injectable gels, nanoparticles, etc. within a biomedical context. Among these polymers, only a limited number is reported which shows selective degradation under mild acidic conditions. However, extension of the library of transiently thermoresponsive polymers is desired to broadening the biomaterials toolbox to suit specific needs. Three monomers were developed by modification of 2-hydroxyethylacrylamide (HEAm) via tetrahydropyranylation or -furanylation with 3,4-dihydro-2H-pyran (DHP), 2,3-dihydrofuran (DHF) or 2,3-dihydro-5-methylfuran (MeDHF). The presence of an acetal or ketal bond provided the monomers a pH-dependent hydrolysis behavior ranging from minutes to days. RAFT polymerisation allowed for the construction of homopolymers with temperature responsive behavior and pH-dependent hydrolysis which was strongly influenced by nature of the monomeric repeating units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call