Abstract

Enzyme-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization provides a sustainable strategy for efficient production of well-defined polymers under mild conditions. Horseradish peroxidase (HRP), a heme-containing metalloenzyme, catalyzes oxidation of acetylacetone (ACAC) by hydrogen peroxide (H2O2) to generate ACAC radicals, initiating polymerization of vinyl monomers. This HRP/H2O2/ACAC ternary initiating system is applied to RAFT polymerization of different types of vinyl monomers. Furthermore, to overcome the inherent limitation of necessity for oxygen-free conditions, another enzyme, glucose oxidase (GOx) or pyranose 2-oxidase (P2Ox), with excellent deoxygenation capability, is introduced to consume oxygen by catalyzing oxidation of glucose to generate H2O2. The generated H2O2 is directly supplied to HRP catalysis for radical generation. Both GOx-HRP and P2Ox-HRP cascade catalysis afford RAFT polymerization with oxygen tolerance. In this chapter, we mainly focus on detailed synthetic protocols of RAFT polymerizations initiated by HRP/H2O2/ACAC ternary initiating system and P2Ox-HRP cascade catalysis. The general characterization and analytical methods used in these enzyme-initiated RAFT polymerizations are also included.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call