Abstract
This tutorial intends to provide insight, instructions and "best practices" for those who are novices-including clinicians, engineers and non-engineers-in extracting electromyogram (EMG) amplitude from the bipolar surface EMG (sEMG) signal of voluntary contractions. A brief discussion of sEMG amplitude extraction from high density sEMG (HDsEMG) arrays and feature extraction from electrically elicited contractions is also provided. This tutorial attempts to present its main concepts in a straightforward manner that is accessible to novices in the field not possessing a wide range of technical background (if any) in this area. Surface EMG amplitude, also referred to as the sEMG envelope [often implemented as root mean square (RMS) sEMG or average rectified value (ARV) sEMG], quantifies the voltage variation of the sEMG signal and is grossly related to the overall neural excitation of the muscle and to peripheral parameters. The tutorial briefly reviews the physiological origin of the voluntary sEMG signal and sEMG recording, including electrode configurations, sEMG signal transduction, electronic conditioning and conversion by an analog-to-digital converter. These topics have been covered in greater detail in prior tutorials in this series. In depth descriptions of state-of-the-art methods for computing sEMG amplitude are then provided, including guidance on signal pre-conditioning, absolute value vs. square-law detection, selection of appropriate sEMG amplitude smoothing filters and attenuation of measurement noise. The tutorial provides a detailed list of best practices for sEMG amplitude estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.