Abstract

The design and development of fluorescent materials for detecting cancer-related enzymes are crucial for cancer diagnosis and treatment. Herein, we present a substituted rhodamine derivative for the chromogenic and fluorogenic detection of the cancer-relevant enzyme γ-glutamyltranspeptidase (GGT). Initially, the probe is non-chromic and non-emissive due to its spirolactam form, which hinders extensive electronic delocalization over broader pathway. However, selective enzymatic cleavage of the side-coupled group triggers spirolactam ring opening, resulting in electronic flow across the rhodamine skeleton, and reduces the band gap for low-energy electronic transitions. This transformation turns the reaction mixture from colorless to intense pink, with prominent UV and fluorescence bands. The sensor's selectivity was tested against various human enzymes, including urease, alkaline phosphatase, acetylcholinesterase, tyrosinase, and cyclooxygenase, and showed no response. Absorption and fluorescence titration analyses of the probe upon incremental addition of GGT into the probe solution revealed a consistent increase in both absorption and emission spectra, along with intensified pink coloration. The cellular toxicity of the receptor was evaluated using the MTT assay, and bioimaging analysis was performed on BHK-21 cells, which produced bright red fluorescence, demonstrating the probe's excellent cell penetration and digestion capabilities for intracellular analytical detection. Molecular docking results supported the fact that probe-4 made stable interactions with the GGT active site residues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.