Abstract
The co-combustion performance of textile dyeing sludge (TDS) and waste biochar (BC) was explored in terms of their decomposition behaviors, gas emission patterns, bottom slag characteristics, and elemental transformations. The decompositions of both TDS and BC were divided into four stages, with the largest heat release from the fixed carbon combustion. Their synergy effect occurred in the range of 530–700 °C. The average activation energy was 172.13 kJ/mol for TDS, 250.31 kJ/mol for BC, and lowest (169.41 kJ/mol) for 60TDS40BC (60% TDS and 40% BC). The 40% BC addition decreased total SO2 emission by 70.79% but increased total NO emission by 19.43% when compared to the TDS mono-combustion at 1000 °C. The 40% BC addition inhibited the formations of sulfoxide, sulfone/sulfonic acid, and amine nitrogen, as well as the decomposition of sulfate but promoted the decomposition of pyridinic nitrogen. The main mineral phases of the bottom slags at 700 °C included Fe2O3 and CaSO4 for TDS, while that for 60TDS40BC was CaSO4, NaCl, and K5Al5Si3O16. Our results provide new ideas for the resource utilization and pollution control of TDS and BC, make the disposal of TDS cleaner and more efficient, and help to promote the sustainable development of the environment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have