Abstract

This study investigates the thermal compensation mechanism in dual-mode Si3N4 microresonators that demonstrates the ease of generation of single-solitons with nearly octave-wide spectral bandwidth. The deterministic creation of soliton frequency combs is achieved by merely switching the wavelength of a tunable laser or a semiconductor diode laser in a single step. The pump frequency detuning range that can sustain the soliton state is 30 gigahertz (GHz), which is approximately 100 times the resonance linewidth. Interestingly, these dual-mode resonators also support the coexistence of primary combs and solitons, enabling their utilization as functional microwave synthesizers. Furthermore, these resonators readily facilitate the generation of diverse multi-solitons and soliton crystals. This work presents a simplified system to access high-performance and versatile Kerr solitons, with wide-ranging applications in optical metrology, microwave photonics, and LiDAR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.