Abstract

In this paper, we have investigated the phenomena of Turing pattern formation in a predator-prey model with habitat complexity in presence of cross diffusion. Using the linear stability analysis, the conditions for the existence of stationary pattern and the existence of Hopf bifurcation are obtained. It is shown analytically that the presence of cross diffusion in the system supports the formation of Turing pattern. Two parameter bifurcation analysis are done analytically and corresponding bifurcation diagrams are presented numerically. A series of simulation results are plotted for different biologically meaningful parameter values. Effects of variation of habitat complexity and the predator mortality rate and birth rate of prey on pattern formation are also reported. It is shown that cross-diffusion can lead to a wide variety of spatial and spatiotemporal pattern formation. It is found that the model exhibits spot and stripe pattern, and coexistence of both spot and strip patterns under the zero flux boundary condition. It is observed that cross-diffusion, habitat complexity, birth rate of prey and predator’s mortality rate play a significant role in the pattern formation of a distributed population system of predator-prey type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.