Abstract

The Turing and Benjamin–Feir instabilities are two of the primary instability mechanisms useful for studying the transition from homogeneous states to heterogeneous spatial or spatio-temporal states in reaction–diffusion systems. We consider the case when the underlying reaction–diffusion system is non-autonomous or has a base state which varies in time, as in this case standard approaches, which rely on temporal eigenvalues, break down. We are able to establish respective criteria for the onset of each instability using comparison principles, obtaining inequalities which involve the in general time-dependent model parameters and their time derivatives. In the autonomous limit where the base state is constant in time, our results exactly recover the respective Turing and Benjamin–Feir conditions known in the literature. Our results make the Turing and Benjamin–Feir analysis amenable for a wide collection of applications, and allow one to better understand instabilities emergent due to a variety of non-autonomous mechanisms, including time-varying diffusion coefficients, time-varying reaction rates, time-dependent transitions between reaction kinetics and base states which change in time (such as heteroclinic connections between unique steady states, or limit cycles), to name a few examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.