Abstract

Networks have become ubiquitous in the modern scientific literature, with recent work directed at understanding ‘temporal networks’—those networks having structure or topology which evolves over time. One area of active interest is pattern formation from reaction–diffusion systems, which themselves evolve over temporal networks. We derive analytical conditions for the onset of diffusive spatial and spatio-temporal pattern formation on undirected temporal networks through the Turing and Benjamin–Feir mechanisms, with the resulting pattern selection process depending strongly on the evolution of both global diffusion rates and the local structure of the underlying network. Both instability criteria are then extended to the case where the reaction–diffusion system is non-autonomous, which allows us to study pattern formation from time-varying base states. The theory we present is illustrated through a variety of numerical simulations which highlight the role of the time evolution of network topology, diffusion mechanisms and non-autonomous reaction kinetics on pattern formation or suppression. A fundamental finding is that Turing and Benjamin–Feir instabilities are generically transient rather than eternal, with dynamics on temporal networks able to transition between distinct patterns or spatio-temporal states. One may exploit this feature to generate new patterns, or even suppress undesirable patterns, over a given time interval.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.