Abstract

Cyanobacteria exhibit a variety of adaptive strategies that allow them to thrive in ever-changing aquatic environments. Here, successive steady states of continuous cultures were used to investigate the effects of quantified turbulence on the biochemical compounds and physiological processes of Anabaena flos-aquae in a photobioreactor under different dilution rates. A rapid increase in cell density was clearly observed following an increase in the turbulent dissipation rate at all growth rates of A. flos-aquae. The photosynthetic response to irradiance curves showed that the turbulence-treated strains exhibited lower photosynthetic oxygen evolution and saturating irradiance as well as higher respiration in rapidly growing young cells, indicating that they might not be very adaptable to high turbulent dissipation rates. Additionally, there was an increase in the protein levels of A. flos-aquae with increasing turbulence at all growth rates, whereas carbohydrate formation and lipid accumulation demonstrated the opposite trends. At a high growth rate, the level of carbohydrates decreased whereas that of lipids increased, which was interpreted as reflecting an adaptation to the turbulent environment. These findings suggest that turbulence sensitivity is shear regimen- and growth rate-dependent in A. flos-aquae. The high respiration capacity, low saturating irradiance, and conversion of carbohydrates to lipids represent effective measures for revealing the adaptive strategies of rapidly growing young cells under hydrodynamic regimes. The results regarding optimum lipid accumulation with specific growth traits have important implications for the design of cultivation methods of cyanobacteria resource utilization with respect to regulating turbulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call