Abstract

This investigation is aimed at studying the heat transfer characteristics and pressure drop for turbulent airflow in a sudden expansion pipe equipped with propeller swirl generator. The investigation is performed for the Reynolds number ranging from 10,000 to 41,000 under a uniform heat flux condition. The experiments are conducted for three locations for the propeller fan upstream the sudden expansion and three locations downstream the sudden expansion (N = 5 blades and blade angle of 45°). The influences of using a freely rotating propeller on heat transfer enhancement and pressure drop are reported. The experimental results indicate that inserting the propeller downstream of the tube provides considerable improvement of the heat transfer rate higher than inserting the propeller upstream the tube. The increase in pressure drop resulting from using the propeller upstream is found to be higher than the downstream swirler. The maximum performance enhancement for the downstream swirler is about 326% while it is about 213% for upstream one. Correlations for relative mean Nusselt number and enhancement performance are presented for different fan locations and different Reynolds numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.