Abstract
Results of a direct numerical simulation (DNS) for Rayleigh-Bénard convection for the Rayleigh number Ra = 105 in a fluid with the Prandtl number Pr = 0.025, which corresponds to liquid lead-bismuth, are used to analyze the turbulent heat flux and the temperature variance dissipation rate. The results indicate that application of a thermal or a mixed timescale may considerably improve gradient diffusion and algebraic heat flux models at these Rayleigh and Prandtl numbers. Therefore, a good approximation of the temperature variance dissipation rate is required. The standard temperature variance dissipation rate model is investigated using the DNS results. The analysis of the standard model shows the importance of wall functions and qualitatively good predictions by the model for this type of flow. Quantitatively, the model overpredicts the temperature variance dissipation rate evaluated from the results of DNS by ˜25%. The two-point correlation method is used to derive new models for the temperature variance dissipation rate. Comparison with DNS results shows qualitatively and quantitatively good predictions by the new models. These new models lead therefore to an increased accuracy of the turbulent heat flux models for this type of flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.