Abstract

Turbulent drag reduction (DR) through streamwise travelling waves of the spanwise wall oscillation is investigated over a wide range of Reynolds numbers. Here, in Part 1, wall-resolved large-eddy simulations in a channel flow are conducted to examine how the frequency and wavenumber of the travelling wave influence the DR at friction Reynolds numbers $Re_\tau = 951$ and $4000$ . The actuation parameter space is restricted to the inner-scaled actuation (ISA) pathway, where DR is achieved through direct attenuation of the near-wall scales. The level of turbulence attenuation, hence DR, is found to change with the near-wall Stokes layer protrusion height $\ell _{0.01}$ . A range of frequencies is identified where the Stokes layer attenuates turbulence, lifting up the cycle of turbulence generation and thickening the viscous sublayer; in this range, the DR increases as $\ell _{0.01}$ increases up to $30$ viscous units. Outside this range, the strong Stokes shear strain enhances near-wall turbulence generation leading to a drop in DR with increasing $\ell _{0.01}$ . We further find that, within our parameter and Reynolds number space, the ISA pathway has a power cost that always exceeds any DR savings. This motivates the study of the outer-scaled actuation pathway in Part 2, where DR is achieved through actuating the outer-scaled motions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call