Abstract
Abstract As part of the Coupled Boundary Layers Air–Sea Transfer (CBLAST)-Hurricane program, flights were conducted to directly measure turbulent fluxes and turbulence properties in the high-wind boundary layer of hurricanes between the outer rainbands. For the first time, vertical profiles of normalized momentum fluxes, sensible heat and humidity fluxes, and variances of three-dimensional wind velocities and specific humidity are presented for the hurricane boundary layer with surface wind speeds ranging from 20 to 30 m s−1. The turbulent kinetic energy budget is estimated, indicating that the shear production and dissipation are the major source and sink terms, respectively. The imbalance in the turbulent kinetic energy budget indicates that the unmeasured terms, such as horizontal advection, may be important in hurricane boundary layer structure and dynamics. Finally, the thermodynamic boundary layer height, estimated based on the virtual potential temperature profiles, is roughly half of the boundary layer height estimated from the momentum flux profiles. The latter height where momentum and humidity fluxes tend to vanish is close to that of the inflow layer and also of the maximum in the tangential velocity profiles.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have