Abstract

Modified WKB theory for calculating tunneling splittings in symmetric multi-well systems in full dimensionality is re-derived using Cartesian coordinates. It is explicitly shown that the theory rests on the wavefunction that is exact for harmonic potentials. The theory was applied to calculate tunneling splittings in vinyl radical and some of its deuterated isotopologues in their vibrational ground states and the low-lying vibrationally excited states and compared to exact variational results. The exact results are reproduced within a factor of 2 in most states. Remarkably, all large enhancements of tunneling splittings relative to the ground state, up to three orders in magnitude in some excited mode combinations, are well reproduced. It is also shown that in the asymmetrically deuterated vinyl radical, the theory correctly predicts the states that are localized in a single well and the delocalized tunneling states. Modified WKB theory on the minimum action path is computationally inexpensive and can also be applied without modification to much larger systems in full dimensionality; the results of this test case serve to give insight into the expected accuracy of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call