Abstract

The self-interaction of a quantum dot tunnel with Coulomb interaction coupled to two noninteracting leads is investigated. The self-energy function describing this interaction is added to a bare energy of a dot state. In the standard way of determining the self-interaction (tunneling-induced) corrections to bare energies of emitters (atoms, quantum dots, etc) the variations of the self-energy functions with energy are ignored, and these corrections are considered to be equal to the values of the self-energy functions for bare energies of states. We show that actually in the case of quantum dots the variations of the self-energy functions in the energy interval between the bare and true energies can be strong, and this can have a significant effect on the values of the tunneling-induced shifts of energy levels of quantum dots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.