Abstract

The photoluminescence decay dynamics of colloidal CdSe, Cu+:CdSe, and CuInS2 nanocrystals have been examined as a function of temperature and magnetic field. All three materials show photoluminescence decay on time scales significantly longer than the intrinsic lifetimes of their luminescent excited states, i.e., delayed luminescence, involving formation of a metastable trapped excited state followed by detrapping to re-form the emissive excited state. Surprisingly, the delayed luminescence decay kinetics are nearly identical for these three very different materials, suggesting they reflect universal properties of the delayed luminescence phenomenon in semiconductor nanocrystals. By measuring luminescence decay over 8 decades in time and 6 decades in intensity, we observe for the first time a clear deviation from power-law dynamics in delayed luminescence. Furthermore, for all three materials, the delayed luminescence decay dynamics are observed to be nearly independent of temperature between 20 K and roo...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.