Abstract
Tunneling hot-electron transfer amplifier (THETA) devices, based on GaAs-AlGaAs heterojunctions, were fabricated and tested. Hot-electron transfer (α) through a 1100-Å base in excess of 70% was found at 4.2 K. This resulted in a corresponding current gain ( β) in a common emitter configuration of about 2.3. In the temperature range of 4.2–80 K and under constant biasing conditions, α was nearly temperature independent. Electron energy distributions for motion normal to the layers and electron total energy loss while traversing the device were estimated. Typical widths of the energy distributions were less than 200 meV, and both widths and energy peak positions were only slightly dependent on temperature and initial injection energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.