Abstract

Proton tunneling dominates the oxidative deamination of tryptamine catalyzed by the enzyme aromatic amine dehydrogenase. For reaction with the fast substrate tryptamine, a H/D kinetic isotope effect (KIE) of 55 +/- 6 has been reported-one of the largest observed in an enzyme reaction. We present here a computational analysis of this proton-transfer reaction, applying combined quantum mechanics/molecular mechanics (QM/MM) methods (PM3-SRP//PM3/CHARMM22). In particular, we extend our previous computational study (Masgrau et al. Science 2006, 312, 237) by using improved energy corrections, high-level QM/MM methods, and an ensemble of paths to estimate the tunneling contributions. We have carried out QM/MM molecular dynamics simulations and variational transition state theory calculations with small-curvature tunneling corrections. The results provide detailed insight into the processes involved in the reaction. Transfer to the O2 oxygen of the catalytic base, Asp128beta, is found to be the favored reaction both thermodynamically and kinetically, even though O1 is closer in the reactant complex. Comparison of quantum and classical models of proton transfer allows estimation of the contribution of hydrogen tunneling in lowering the barrier to reaction in the enzyme. A reduction of the activation free energy due to tunneling of 3.1 kcal mol-1 is found, which represents a rate enhancement due to tunneling by 2 orders of magnitude. The calculated KIE of 30 is significantly elevated over the semiclassical limit, in agreement with the experimental observations; a semiclassical value of 6 is obtained when tunneling is omitted. A polarization of the C-H bond to be broken is observed due to the close proximity of the catalytic aspartate and the (formally) positively charged imine nitrogen. A comparison is also made with the related quinoprotein methylamine dehydrogenase (MADH)-the much lower KIE of 11 that we obtain for the MADH/methylamine system is found to arise from a more endothermic potential energy surface for the MADH reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call