Abstract
Graphitic carbon nitride (g-C3N4) is regarded as an attractive photocatalyst for solar fuel production, i.e., H2 evolution and CO2 photoreduction. Yet, its structural, chemical and optoelectronic properties are very much dependent on the synthesis method and are likely to contribute differently whether H2 evolution or CO2 reduction is considered. Little is known about this aspect making it difficult to tailor g-C3N4 structure and chemistry for a specific photoreaction. Herein, we create g-C3N4 of varying chemical, structural and optical features by applying specific thermal treatments and investigating the effects of the materials properties on solar fuel production. The samples were characterized across scales using spectroscopic, analytical and imaging tools, with particular attention given to the analyses of trap states. In the case of H2 evolution, the reaction is controlled by light absorption and charge separation enabled by the presence of trap states created by N vacancies. In the case of CO2 phot...
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have