Abstract

Mechanical stress is an established and important tool of the semiconductor industry to improve the performance of modern transistors. It is well understood for the enhancement of carrier mobility but rather unexplored for the control of the tunneling probability for injection dominated research devices based on tunneling phenomena, such as tunnel FETs, resonant tunnel FETs and reconfigurable Schottky FETs. In this work, the effect of stress on the tunneling probability and overall transistor characteristics is studied by three-dimensional device simulations in the example of reconfigurable silicon nanowire Schottky barrier transistors using two independently gated Schottky junctions. To this end, four different stress sources are investigated. The effects of mechanical stress on the average effective tunneling mass and on the multi-valley band structure applying the deformation potential theory are being considered. The transfer characteristics of strained transistors in n- and p-configuration and corresponding charge carrier tunneling are analyzed with respect to the current ratio between electron and hole conduction. For the implementation of these devices into complementary circuits, the mandatory current ratio of unity can be achieved by appropriate mechanical stress either by nanowire oxidation or the application of a stressed top layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.