Abstract

This study aims to tune the transport properties of tetracene single-molecule junctions with the proper choice and placement of side and anchoring groups. For the operationalization of the molecule that was anchored with thiol or isocyanide groups, two different side groups, amine and nitro, in two different positions, were taken into consideration. For unperturbed tetracene molecule, a prominent negative differential resistance (NDR) feature at 1.8 V was observed with the isocyanide anchoring group while the thiol anchoring group exhibits a plateau region over a bias voltage of 2.2 to 3.2 V. At a bias voltage that is dependent on the chemical or structural change of side or anchoring groups, NDR feature of varying degree was seen in all configurations. Results show that the current flowing through the thiol-anchored molecule perturbed with the amine group at S' position is relatively larger than other configurations because of the smaller HOMO-LUMO gap and broader transmission peaks resulting in a peak to valley current ratio (PVCR) of 1.22. In addition, multiple NDR regions were realized in nitro-perturbed isocyanide-anchored molecule at S position. These results suggest their promising applications in switches, logic cells, and storage devices. The modeling and simulation of side-group mediated anchored tetracene molecule through two electrodic systems were studied using density functional theory (DFT) combined with non-equilibrium Green's function (NEGF) in Virtual NanoLab-AtomistixToolkit (ATK). The electron transport properties were calculated using Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) exchange-correlation function. To optimize computing time, gold electrodes were single zeta polarized whereas the molecule, anchor groups, and side groups were double zeta polarized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call