Abstract

While synthesizing quasi-one-dimensional nanoribbons, there is a finite probability that edges have cove-edge defects. This paper focuses on the structural, electronic, and transport properties of cove-edge aluminum nitride nanoribbons (AlNNR) using density functional theory and the non-equilibrium Green’s function (NEGF) method. The cove-edge AlNNRs are thermodynamically stable and exhibit metallic behavior. Interestingly, the calculated current–voltage characteristics of the cove-edge AlNNR-based nanodevices show negative differential resistance (NDR). The H-AlN-Cove nanodevice exhibits high peak-to-valley current ratio (PVCR) of the order of 107. The calculated PVCR of the H-AlN-Cove nanodevice is 106 times higher than that of the silicene nanoribbon (SiNR) and graphene nanoribbon (GNR), and 104 times higher than that of the phosphorene nanoribbon (PNR) and arsenene nanoribbons (ANR)-based devices respectively. The NDR feature with high PVCR provides a prospect for the cove-edge AlNNR in nanodevice applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.