Abstract

Reliable and cost-effective glucose sensors are in rising demand among diabetes patients. The combination of metals and conducting polymers creates a robust electrocatalyst for glucose oxidation, offering enzyme-free, high stability, and sensitivity with outstanding electrochemical results. Herein, graphene is grown on nickel foam by chemical vapor deposition to make a graphene@nickel foam scaffold (G@NF), on which silver nanoplates-polyaniline (Ag-PANI) 3D architecture is developed by sonication-assisted co-electrodeposition. The resulting binder-free 3D Ag-PANI/G@NF electrode was highly porous, as characterized by XPS, FESEM, XRD, 
FTIR, and Raman spectroscopy. The binder-free 3D Ag-PANI/G@NF electrode exhibits remarkable electrochemical efficiency with a superior electrochemical active surface area. The amperometric analysis provides excellent anti-interference performance, a low limit of deduction (0.1 nM), robust sensitivity (1.7 x 1013 µA mM-1cm-2), and a good response time. Moreover, the Ag-PANI/G@NF enzyme-free sensor is utilized to observe glucose levels in human blood serums and exhibits excellent potential to become a reliable clinical glucose sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.