Abstract

HypothesisThe shape and quantity of hydrophilic silica nanoparticles (NPs) can be used to tune the microstructure, rheology, and stability of phase-separating polymer solutions. In thermoresponsive polymer systems, silica nanospheres are well-studied whereas anisotropic NPs have little literature precedent. Here, we hypothesize that NP shape and concentration lower the onset of rheological and turbidimetric transitions of aqueous poly(N-isopropyl acrylamide) (PNIPAM) solutions. ExperimentsDifferential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), turbidimetry, and oscillatory rheology are utilized to examine interactions between NPs, PNIPAM, and water and to track changes in phase separation and rheological properties due to NP concentration and shape. FindingsNP addition reduces phase separation enthalpy due to PNIPAM-NP hydrogen bonding interactions, the degree to which depends on polymer content. While NP addition minorly impacts thermodynamic and optical properties, rheological transitions and associated rheological properties are dramatically altered with increasing temperature, and depend on NP quantity, shape, and polymer molecular weight. Thus NP content and shape can be used to finely tune transition temperatures and mechanical properties for applications in stimuli-responsive materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call