Abstract

The efficient removal of hydrogen sulfide (H2S) is of great importance for various industrial processes such as the sewage stream depollution and syngas upgrade. Oxidative desulfurization with polyoxometalates (POMs) has been proved one of the most attractive ways to remove H2S from the systems, while the role of the central atom in POMs has not been well evaluated. Herein, we demonstrate the desulfurization activity of POMs could be well internally switched by the central atoms. In particular, the SVI-centered POM of [Himi]SMo, exhibited greatly enhanced desulfurization performance compared to its structural analogs with GeIV or PV as central atoms, with a breakthrough H2S capacity of 627.0 mg g−1 compared to 39.5 and 54.9 mg g−1 respectively, well surpassing state-of-the-art H2S desulfurizes. In addition, its activity was well maintained at a wide range of temperature (0–50 °C) and pH (4−9). More interestingly, electrochemical re-oxidation of the H2S laden [Himi]SMo was found much more active than the fresh one, achieving H2S capacity up to 2174 mg g−1. Air involved in-situ re-oxidation and S-O metathesis mechanisms were proposed and experimentally evidenced to explain the high capacity. This work opens a new concept for the rational design of POMs in terms of H2S removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call