Abstract
Collaborative treatment of pollutants is a promising approach for wastewater treatment. In this work, a covalent organic framework material (COFs) with an imine structure was synthesised by the Schiff base reaction, and photochemical tests showed good photochemical effects. It was used to explore the photocatalytic treatment of co-existing pollutants (heavy metal ions and antibiotics) and the performance of treating co-existing wastewater was investigated. The degradation performance of levofloxacin (LVX) and Cr(VI) was improved in the coexisting pollutants system, with the LVX degradation being 4.2 times more effective than that of the LVX solitary system. Moreover, this phenomenon was also observed in LVX/Ag(I), LVX/Fe(III), sulfadiazine/Cr(VI), norfloxacin/Cr(VI) and tetracycline/Cr(VI) systems. The analysis of active species suggesting that the synergistic promotion of photocatalytic oxidation-reduction systems was not only promoting from the improvement of simple charge separation, but it was also found that high-valent metal species can act directly in the oxidative decomposition of antibiotics. The interaction of pollutants and intermediates were rationally exploited and confirmed by control experiments and theoretical calculation. This conclusion helps us to re-examine the underlying mechanisms of photocatalytic synchronous oxidation and reduction reactions, simultaneously beneficial for the development of mixed pollutant control processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.