Abstract
We explored a versatile enzyme nanoencapsulation process based on the synthesis of silica gel nanoparticles, decorated with a dense hydrophilic poly(glycerol monomethacrylate) (PGMMA) shell for biological and therapeutic applications. These hybrid enzyme-SiO2-polymer nanoparticles were obtained through an aqueous sol-gel process, followed by the adsorption of cationic macroinitiators by electrostatic complexation. Surface-initiated Atom Transfer Radical Polymerisation (ATRP) was applied to obtain a dense hydrophilic (protein repellent) PGMMA layer of tunable size, under conditions which are compatible with the nanoencapsulation of horseradish peroxidase. The sol-gel synthetic procedure, the composition and molecular weight of the macroinitiators, the polymer adsorption and purification methods, and the final ATRP conditions, were optimised to control the properties of these nanoparticles, in terms of particle size, Z-potential, PGMMA decoration, while preserving enzymatic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.