Abstract

Electrochemical CO2 reduction is a promising strategy for the utilization of CO2 and intermittent excess electricity. Cu is the only single metal catalyst that can electrochemically convert CO2 into multicarbon products. However, Cu exhibits an unfavorable activity and selectivity for the generation of C2 products because of the insufficient amount of CO* provided for the C-C coupling. Based on the strong CO2 adsorption and ultrafast reaction kinetics of CO* formation on Pd, an intimate CuPd(100) interface was designed to lower the intermediate reaction barriers and improve the efficiency of C2 product formation. Density functional theory (DFT) calculations showed that the CuPd(100) interface enhanced the CO2 adsorption and decreased the CO2* hydrogenation energy barrier, which was beneficial for the C-C coupling. The potential-determining step (PDS) barrier of CO2 to C2 products on the CuPd(100) interface was 0.61 eV, which was lower than that on Cu(100) (0.72 eV). Encouraged by the DFT calculation results, the CuPd(100) interface catalyst was prepared by a facile chemical solution method and characterized by transmission electron microscopy. CO2 temperature-programmed desorption and gas sensor experiments further confirmed the enhancement of the CO2 adsorption and CO2* hydrogenation ability of the CuPd(100) interface catalyst. Specifically, the obtained CuPd(100) interface catalyst exhibited a C2 Faradaic efficiency of 50.3% ± 1.2% at −1.4 VRHE in 0.1 M KHCO3, which was 2.1 times higher than that of the Cu catalyst (23.6% ± 1.5%). This study provides the basis for the rational design of Cu-based electrocatalysts for the generation of multicarbon products by fine-tuning the intermediate reaction barriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.