Abstract

A novel surface plasmon polaritons (SPPs) refractive index sensor based on a single defect nanocavity coupled with a metal–insulator–metal (MIM) waveguide is proposed and numerically simulated by using the finite difference time domain (FDTD) method with perfectly matched layer absorbing boundary condition. It is found that the defect structure can realize two Fano resonances and these two Fano resonances originate from two different mechanisms. The results demonstrate the liner correlation between the resonance wavelengths of the device and the refractive index of the material under sensing. Through the optimization of structural parameters, we achieve a theoretical value of the refractive index sensitivity as high as 1800.4 nmRIU[Formula: see text]. It could be utilized to develop ultra-compact nanodevice for high-resolution biological sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.