Abstract

Fano resonance (FR) is a universal phenomenon that is used to attain electromagnetic-induced transparency (EIT), high absorption and sensitivity, and low-power photonic devices. This work presents dual FR refractive index (RI) sensor models on a plasmonic metal-insulator-metal (MIM) waveguide system. The FR phenomenon is attained by including circular and elliptic nanorod defects in the bus waveguides. The resonances originate from the defect's narrow discreteness and the rectangular resonator's broad state. Analytical methods such as finite difference time domain (FDTD) and multimode interference coupled mode theory are adopted to analyze the FRs. The shapes of the Fano line and resonance peak amplitude can be tuned independently by controlling the diameter of the defects, the separation between the defects, and the coupling (between the resonator and the bus waveguide) distance. Moreover, the proposed structures detect the RI (human hemoglobin) variation in the bus waveguide and resonator. The obtained results with circular nanorod defect verify the autocorrelation coefficient of 99.92 %, ensuring the device's linearity and high performance. However, an autocorrelation of 99.7 % is attained by using two elliptic nanorod defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.