Abstract

—Density function theory (DFT) based simulation combined with non-equilibrium green function (NEGF) was used to theoretically investigate electrical properties of symmetrical and asymmetrical boron nitride (BN) passivated graphene nanoribbons. Using density function theory method, it is demonstrated that the band gap of armchair (A) graphene nanoribbon (GNR) can be widened with boron nitride passivation. five symmetrical and five asymmetrical structures were considered, for which we obtained band gaps from 0.45 eV to 2 eV for symmetrical structures and 0.3 eV to 1.5 eV for asymmetrical structures. For the same width of graphene nanoribbon, our results showed that asymmetrical structure has a smaller band gap and almost the same conductance in comparison with the symmetrical one. Finally, comparison between the asymmetrical structure and the hydrogenated armchair graphene (h-AGNR) nanoribbon showed that, hBN-AGNR exhibited a higher conductance compared to an h-AGNR for the same width of GNR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.