Abstract

In this work, six Pt(II) complexes have been studied via density functional theory (DFT)/time-dependent DFT caculations to explore the influence of different ancillary ligand on electron structures, photophysical properties and radiative decay processes. Moreover, the self-consistent spin–orbit coupling TDDFT was used to calculate zero-field splitting, radiative rate and radiative lifetime to unveil the radiative deactivation processes for these complexes. The results indicated that [Pt(ppy)(ppz)] (ppy = 2-phenylpyridine and ppz = 5-(2-pyridyl)-pyrazole) has a higher radiative decay rate constant and a smaller nonradiative decayrate constant than that of [Pt(ppy)(acac)] (acac = acetylacetonate). Furthermore, complex 5, with dimesityboron added on the 3′-position of the pyrazole ring in [Pt(ppy)(ppz)], shows great potential to serve as an efficient blue-green light emitter in OLED.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.