Abstract
Uncovering the photodeactivation mechanisms of unique N‐heterocyclic carbene (NHC)‐based transition metal complexes is favorable for designing more high‐efficiency phosphorescent materials. In this work, four bidentate platinum (II) complexes with NHC‐chelate are investigated by the density functional theory (DFT) and time‐dependent density functional theory (TDDFT) to probe into how the ring size of NHC‐chelate unit influences on electronic structures and the phosphorescent properties. To illustrate the photodeactivation mechanisms clearly, three significant photodeactivation processes (radiative decay process, temperature‐independent and temperature‐dependent nonradiative decay processes) were taken into consideration. We stated that radiative decay rate constants kr slightly increased with declined number of NHC‐chelate ring, owing to the gradually larger SOC matrix elements between the T1 state and Sn states. Combining the temperature‐independent with temperature‐dependent nonradiative decay processes, the nonradiative decay rate knr is Pt‐4 (five‐membered) < Pt‐3 (six‐membered) < Pt‐2 (seven‐membered) < Pt‐1 (eight‐membered). The calculated results testify that the decrease of size of the NHC chelating unit is a reliable insurance to improve the quantum yield. The designed complex Pt‐4 with five‐membered NHC‐ring can serve as a highly efficient phosphorescent material in the future. The results indicated controlling the ring size of NHC‐chelate is a feasible method to tune phosphorescence properties of Pt (II) complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.