Abstract
Increased levels and detrimental effects of volatile organic compounds (VOCs) stimulate research efforts to develop catalysts with high efficiency in complete hydrocarbon oxidation. This work is focused on the complete oxidation of benzene as a probe reaction for VOCs elimination over alumina-supported CuO-CeO2 mixed oxide promoted by gold. The benzene molecule is the most stable among the aromatic hydrocarbons with toxic and often carcinogenic effects known as BTEX (benzene, toluene, ethylbenzene, and xylenes) owing to the symmetry and stability of the benzene ring. Use of low-cost materials as support is an appropriate strategy aimed at improving catalyst economic profitability. The effect of the Cu-Ce ratio, namely 2:1 and 1:5, and the role of supported gold in the catalyst performance were evaluated. Analysis of the impact of support composition in benzene oxidation was based on sample characterization by textural measurements, PXRD, EPR spectroscopy, and the TPR technique. Special attention was paid to the disturbed symmetry of the ceria crystallographic structure by defects formation and its implication for the catalytic activity. Gold on alumina-supported binary oxide catalysts exhibited a significantly higher activity than promoted supported monometallic oxides. The best performance of the Au/Cu-Ce 1:5 sample was related to the highest concentration of paramagnetic Cu2+ ions and the best copper species dispersion evidenced by PXRD, EPR, and TPR results. The catalyst achieved stable total oxidation to CO2 and water by 94% benzene conversion at 250 °C, thus implying the potential of this composition in developing efficient catalytic materials for atmospheric pollutant abatement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.