Abstract
The BN sheet is a nonmagnetic wide-band-gap semiconductor. Using density functional theory, we show that these properties can be fundamentally altered by embedding graphene flakes. Not only do graphene flakes preserve the two-dimensional (2D) planar structure of the BN sheet, but by controlling their shape and size, unexpected electronic and magnetic properties also emerge. The electronic band structure can be tuned from a direct gap to an indirect gap, the energy gap can be further modulated by changing the bonding patterns, and both hole injecting or electron injecting can be achieved by tailoring the triangular embedding pattern. Furthermore, the Lieb theorem still holds, and the embedded triangular graphene flakes become ferromagnetic with full spin polarizations of the introduced electrons or holes, opening the door to their use as spin filters. The study sheds new light on hybrid single-atomic-layer engineering for unprecedented applications of 2D nanomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.