Abstract
MnO/C core-shell nanowires with varying carbon shell thickness were synthesized via calcining resorcinol-formaldehyde resin(RF) with different amounts of hydrothermally synthesized MnO2 nanowires. The relationship between the carbon shell thickness and the anode performance of the MnO/C materials was discussed. With a suitable carbon shell thickness(6.8 nm), the MnO/C core-shell nanowires exhibit better cycling and rate performance than those with a smaller or larger thickness. The TEM results show that after 50 cycles, the core-shell structure with this thickness can be retained, which leads to superior performance. This contribution provides a significant guiding model for optimizing the electrochemical performance of MnO/C core-shell materials by controlling the thickness of carbon shells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.