Abstract

A series of Fe3O4/C core–shell nanospindles with different shell thickness have been synthesized by a wet chemical method and subsequent high-temperature carbonization. The thickness of carbon shell can be well adjusted from 9 to 32 nm by changing the addition amounts of resorcinol and formaldehyde precursors during the coating process. Structure and morphology characterizations reveal that the carbon shell is amorphous structure and uniformly encapsulates on porous Fe3O4 nanospindles. For the first time, a flexible Fe3O4/C/poly(vinylidene fluoride) (PVDF) composite absorber was prepared by embedding the core–shell Fe3O4/C nanospindles in PVDF matrix. The electromagnetic properties of the composite show strong dependence on the carbon-shell thickness. The impedance matching for electromagnetic absorption is improved by the synergy effect between Fe3O4 nanospindles and encapsulated carbon shell. The Fe3O4/C/PVDF composite with thick carbon shell exhibits strong electromagnetic wave absorbing ability with thin absorber thickness. The minimum reflection loss for the absorber with thickness of 2.1 mm can reach −38.8 dB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call