Abstract

Nature is abundant with multi-functional and efficient catalysts such as redox enzymes which scientists wish to emulate with synthetic catalysts. One approach is to tune molecular catalysts through metal-organic ligands but there are grand challenges of molecular catalysts for real applications in energy field. Here we demonstrate a robust inorganic construct based on metal-metal oxide-carbon triple junction nanostructures (ZrO 2 /Pd/carbon) that mimics the functions of enzymes for highly efficient proton transport. The metal oxide tunes the local acidic environment of the metal and improves its ability for proton transport, efficient adsorption of substrate, and accelerated electron transfer. Using electrocatalytic hydrogenation (ECH) of benzaldehyde as a model reaction, we show that the intrinsic activity of the metal toward hydrogenation reaction is improved by over 200 % on the triple junction nanostructured catalysts. This study demonstrates the potential of rational design of multicomponent nanostructured catalysts to achieve enzyme like properties in synthetic catalysts. • The triple junction nanostructured ZrO 2 /Pd/C was prepared to simulate enzymatic effect of proton transfer enhancement. • The incorporated ZrO 2 in Pd/C enhances the activity of electrocatalytic hydrogenation of benzaldehyde by over 200%. • The ZrO 2 can improve proton transfer around ZrO 2 /Pd/C by increasing local acidity. • The ZrO 2 /Pd/C exhibits higher electrochemical stability than Pd/C in acidic environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.