Abstract

We study how the collective effects of nanoparticles arranged in rectangular arrays influence their temporal plasmon response and field enhancement property. By systematically changing the lattice constant for arrays containing identical metal nanorods, we experimentally demonstrate how grating-induced effects affect the position and, more importantly, the broadening of extinction spectra. We correlate these effects with the achievable field enhancement and the temporal duration of plasmon transients and formulate criteria for the generation of enhanced few-cycle localized plasmon oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.